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Eukaryotic genomes encode thousands of long noncoding RNAs

(lncRNAs), which play important roles in essential biological

processes. Although lncRNAs function in the nuclear and

cytoplasmic compartments, most of them occur in the nucleus,

often in association with chromatin. Indeed, many lncRNAs have

emerged as key regulators of gene expression and genome

stability. Emerging evidence also suggests that lncRNAs may

contribute to the organization of nuclear domains. This review

briefly summarizes the major types of eukaryotic lncRNAs and

provides examples of their mechanisms of action, with focus on

plant lncRNAs, mainly in Arabidopsis thaliana, and describes

current advances in our understanding of the mechanisms of

lncRNA action and the roles of lncRNAs in RNA-dependent DNA

methylation and in the regulation of flowering time.
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Introduction
Transcriptome studies in fungi, plants, and animals have

revealed that pervasive transcription from over 90% of the

genome generates a multitude of non-coding RNAs

(ncRNAs) [1,2], including tens of thousands of plant

lncRNAs, broadly defined as ncRNAs longer than

200 nt in length that do not have discernable coding

potential [3�,4��,5]. Early studies questioned the impor-

tance of lncRNAs because of their low expression and

sequence conservation compared with mRNAs, and at-

tributed their existence to transcriptional noise. However,

emerging evidence indicates that many lncRNAs play

key roles in diverse biological processes across eukar-

yotes, ranging from the regulation of mating type in yeast

[6,7] to the pluripotency of embryonic stem cells in

mammals [8]. Plant lncRNAs play key roles in flowering

time, gene silencing, root organogenesis, seedling photo-

morphogenesis, and reproduction [5,9�,10,11�,12��,13��].
www.sciencedirect.com 
Types of lncRNAs
Our emerging understanding of the importance of

lncRNAs has only begun to come to terms with their

remarkable variety of types and origins. LncRNAs arise

from intergenic, intronic, or coding regions in the sense

and antisense directions. On the basis of their genomic

origins, lncRNAs can be broadly classified as: first, long

intergenic ncRNAs (lincRNAs); second, intronic ncRNAs

(incRNAs); and third, natural antisense transcripts

(NATs) transcribed from the complementary DNA

strand of the associated genes (Figure 1a) [14�].

A comprehensive analysis of over 200 Arabidopsis thaliana
transcriptome data sets identified �40,000 putative

lncRNAs, including over 30,000 NATs and over

6000 lincRNAs [3�,4��,15]. Most of these lncRNAs are

not associated with smRNAs and their transcript levels

are 30-fold to 60-fold lower than those of mRNA, similar

to mammalian lncRNAs. NAT pairs, lncRNAs generated

from the opposite strands of coding or noncoding genes,

are surprisingly widespread in Arabidopsis with �70% of

Arabidopsis protein-coding loci encoding potential NAT

pairs of 200–12,370 nt [4��]. NAT pairs can either overlap

completely (�60%) or have complementary sequences in

their 50 or 30 regions (Figure 1a). NAT expression is also

highly tissue-specific and many NATs respond to biotic or

abiotic stresses. Recent analysis of expression of sense–
antisense NAT pairs in response to light uncovered about

1400 light-responsive NATs, with about equal propor-

tions regulated either concordantly or discordantly rela-

tive to the sense transcript. Genes encoding many light-

responsive NATs also showed high levels of histone

acetylation, which dynamically correlated with NAT ex-

pression changes [4��].

The above classification does not do justice to the rich

variety of plant lncRNAs. For example, the diverse group

of lincRNAs includes lncRNAs that serve as precursors

and/or scaffolds for smRNAs in RNA-dependent DNA

methylation (RdDM) silencing pathway (described be-

low), and these lincRNAs likely differ in function from

other lincRNAs transcribed by RNA Pol II. Also, ncRNAs

produced from PHAS loci serve as precursors to generate

21-nt and 24-nt secondary phased phasiRNAs in many

plant genomes [16–18]. Moreover, many additional types

of plant lncRNAs likely remain to be discovered.

In addition to lincRNAs, incRNAs, and NATs, work in

other organisms has identified various types of lncRNAs

transcribed from the regions around transcription start

sites (TSSs), enhancer regions, intron splicing sites, and

transcription termination sites. The lncRNAs expressed
Current Opinion in Plant Biology 2015, 27:207–216
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Figure 1
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LncRNA types and functions. (a) Classification of lncRNA relative to protein-coding genes. Blue boxes indicate protein-coding genes and red lines

indicate lncRNAs. Arrows show the direction of transcription. (b) ASCO-RNA competes with the binding of nuclear speckle RNA-binding proteins (NSRs)

to their targets and changes the splicing patterns of NSR-regulated mRNA targets resulting in production of alternative isoforms and alteration of

developmental fates in plant roots. (c) eRNAs act as nascent transcripts that function in cis as scaffolds for the recruitment of co-activator complexes

mediating chromosome looping between enhancer and promoter regions. (d) The exosome-regulated divergently transcribed seRNAs expressed from

super-enhancers can interact with other ncRNAs arising from divergently transcribed enhancer/s or promoter/s of protein coding genes, engaging in

long-distance interactions and affecting DNA topology and gene expression. (e) LncRNAs serve as scaffolds in the recruitment of chromatin-modifying

factors. (f) LncRNAs modulating intra-chromosomal and inter-chromosomal nuclear architecture. Various individual lncRNAs interacting with multiple

chromatin proteins and different chromatin domains could act together in establishing and maintaining higher-order structure in the nucleus.

(d) Adapted from [36].
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from around TSSs include exosome-sensitive yeast

CUTs (cryptic unstable transcripts) and SUTs (stable

unannotated transcripts) [19], mammalian PROMPTs,

and uaRNAs (upstream antisense RNAs) [20], Xrn1-sen-

sitive XUTs [21], Nrd1-dependent NUTs [22], and

others. A large proportion of mammalian non-polyadeny-

lated lncRNAs also correspond to divergently transcribed,

exosome-sensitive eRNAs mapped to enhancer regions

[23], although plant eRNAs have not yet been reported.

Recent work in Arabidopsis and rice also uncovered a

group of intermediate-sized ncRNAs (im-ncRNAs) of 50-

300 nt in length [24,25]. Classification of im-ncRNAs on

the basis of their proximity to protein-coding genes

identified 299 im-ncRNAs originating from 50 UTRs,

coding, and intronic regions. The presence of 50 UTR

im-ncRNAs correlated with higher expression of the

associated genes and with positive histone marks, such

as H3K4me3 and H3K9ac, but not with negative marks.

Down-regulation of some im-ncRNAs caused molecular

or developmental alterations [24].

Expression of lncRNAs
Most lncRNAs are transcribed by RNA Pol II. Two

additional plant-specific RNA polymerases, Pol IV and

Pol V, also produce lncRNAs [26,27]. Most lncRNAs are

polyadenylated; however, many yeast and mammalian

lncRNAs are non-polyadenylated [23]. Some key plant

lncRNAs are also non-polyadenylated [28,29] and recent

work in Arabidopsis identified hundreds of non-polyade-

nylated lncRNAs induced by specific abiotic stresses [30].

Many plant lncRNAs are developmentally and environ-

mentally regulated and likely represent functional com-

ponents of the transcriptome. For example, many

lincRNAs show significant changes in different organs

or during stress, suggesting that they are dynamically

regulated and might function in development and stress

responses [15]. However, the regulation of lncRNAs in

plants remains poorly understood.

Like all transcripts, lncRNA expression is regulated at the

transcriptional level and by the machineries involved in

their biogenesis, 30 end processing and degradation. One

of these factors is the exosome complex, the main 30–50

exoribonuclease machinery conserved in eukaryotes,

which comprises a nine-subunit core associated with

two additional subunits, Rrp44 and the nuclear-specific

Rrp6, which provide the enzymatic activity. Indeed,

various groups of polyadenylated ncRNAs were originally

identified in Arabidopsis exosome mutants [1]. One of the

distinct subclasses of these ncRNAs comprises upstream

noncoding transcripts, which we termed UNTs, originat-

ing from TSSs of protein-coding genes and resembling

CUTs and PROMPTs. UNTs are collinear with the 50

ends of protein-coding transcripts and frequently extend
www.sciencedirect.com 
into the first intron of their respective overlapping genes

[1].

Molecular functions of lncRNAs
LncRNAs can regulate gene expression on multiple

levels via a number of complex mechanisms. They can

function in either cis or in trans by sequence complemen-

tarity or homology with RNAs or DNA, and/or by struc-

ture, forming molecular frames and scaffolds for assembly

of macromolecular complexes. Most of the studied

lncRNAs function in regulation of gene expression at

the transcriptional level; however, some lncRNAs have

been reported to regulate gene expression posttranscrip-

tionally in a variety of ways.

On the simplest level, lncRNAs can serve as decoys that

prevent the access of regulatory proteins to DNA or RNA

by mimicking their targets. Some Arabidopsis lncRNAs

interact with microRNAs (miRNAs) as competitors and

function as miRNA target mimics, similarly to animal

miRNA sponges. For example, the IPS1 lncRNA acts as a

non-cleavable competitor for PHO2 mRNA, as miR399

targets the PHO2 mRNA for degradation [31]. Many

endogenous miRNA target mimics have also been pre-

dicted by bioinformatics approaches and the function of

some has been experimentally confirmed in Arabidopsis

[32]. The decoy Arabidopsis lncRNA ASCO regulates

plant root development by binding to the regulators of

alternative splicing, nuclear speckle RNA-binding pro-

teins, and hijacking them to change the patterns of

alternative splicing to produce alternative splice isoform

(Figure 1b) [12��].

The best-known functions of lncRNAs are their roles as

regulators of transcription. LncRNAs can directly regu-

late the Pol II transcription machinery. For example,

animal lncRNAs promote the phosphorylation of tran-

scription factors (TFs) and thus regulate their DNA-

binding activity [33]. Many eukaryotic lncRNAs play

important roles in regulation of transcription initiation

and elongation, including control of RNA Pol II pausing,

function through transcriptional interference and as scaf-

folds recruiting chromatin remodelers, which in turn can

affect chromatin topology and nuclear organization

(reviewed in [34�]). The Arabidopsis trans-acting lncRNA

HID1 associates with the chromatin of the TF gene PIF3
and represses its transcription [13��]. The APOLO

lincRNA participates in the spatial association and inter-

action between APOLO and the distant PID genomic

regions via formation of a dynamic chromatin loop that

determines PID expression [9�].

Some mammalian enhancer RNAs (eRNAs) act as na-

scent transcripts and function in cis as scaffolds to recruit

co-activator complexes that mediate chromosome looping

between enhancer and promoter regions, controlling

chromatin topology and modulating gene activation
Current Opinion in Plant Biology 2015, 27:207–216
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(Figure 1c) [35,36��]. eRNAs also function at superen-

hancers, elements characterized by high densities of

individual enhancers. Recent findings suggest that so-

called supereRNAs and divergently transcribed lncRNAs

produced from other enhancers or TSSs may act together

to form higher-order chromosomal structures that enable

control of gene expression. Interestingly, in this case the

exosome machinery affects enhancer activity by regulat-

ing the antisense lncRNAs via either post-transcriptional

RNA degradation or by repression of RNA synthesis via

promotion of early termination of transcription [36��]. A

remarkable correlation was also found between the pres-

ence of genes producing exosome regulated TSS-associ-

ated antisense lncRNAs in the vicinity of a superenhancer

(within up to 310 kb), suggesting that expression and/or

processing of these lncRNAs may control the interaction

between the superenhancers and their counterpart

genes. Interestingly, the exosome also protects regions

expressing eRNAs from genomic instability by resolving

deleterious R-loops [36��], stable RNA-DNA triplexes

that naturally form during transcription, but persist in

divergently transcribed regions [37]. These findings led

to the proposal that activity of the exosome can modulate

the interaction between regulatory elements that control

both gene expression and nuclear organization, via regu-

lation of lncRNAs produced from these elements

(Figure 1c–f).

Most work on lncRNAs has focused on their roles in the

recruitment of chromatin regulatory proteins to genomic

DNA locations. Different classes of chromatin-bound

lncRNAs function as scaffolds for the cooperative assem-

bly of chromatin-modifying complexes, recruiting them

in either smRNA-dependent or smRNA-independent

manners. The most-studied RNAi-dependent pathway

is plant-specific RdDM, as described below [11�]. Other

lncRNA scaffolds recruit chromatin-modifying com-

plexes independently of smRNAs, although how protein

complexes recognize lncRNAs to jointly target genes

remains unclear. Mammalian lncRNAs can positively

regulate transcription via interacting with Trithorax group

proteins to trimethylate histone H3K4 [38], while other

lncRNAs negatively regulate transcription via targeting

repressive histone-modifying activities, for example by

interacting with Polycomb-Repressive Complex 2

(PRC2) to methylate histone H3K27 [39].

Thus, lncRNAs regulate gene expression at the transcrip-

tional and post-transcriptional levels, by multiple, com-

plex mechanisms, which we are just beginning to

understand. The sections below provide more detail on

two of the best-studied functions of lncRNAs, in RdDM

and the regulation of flowering time.

LncRNAs in RdDM
Plant lncRNAs can contribute to epigenetic silencing via

RdDM, which primarily silences repetitive sequences
Current Opinion in Plant Biology 2015, 27:207–216 
and requires the plant-specific RNA polymerases Pol

IV and Pol V [26], with some involvement of RNA Pol

II (see Figure 2) [40]. A group of lncRNAs transcribed by

Pol IV produces 24-nt small interfering RNAs (siRNAs),

and lncRNAs produced by Pol V function as scaffold

RNAs recognized by the siRNA-Ago complex through

sequence complementarity (reviewed in [11�]).

In Arabidopsis, Pol IV generates most siRNAs, although,

Pol V and to a lesser extent Pol II produce the templates

for siRNAs, indicating the complexity of siRNA biogen-

esis [41–44]. The lncRNAs produced by Pol IV and Pol V

have been difficult to identify, possibly due to their very

low abundance or stability. For example, only several Pol

V-transcribed scaffold lncRNAs, which are non-polyade-

nylated and either tri-phosphorylated or capped at the 50

ends, have been reported to date [26]. Recent work

identified Pol IV/RDR2-dependent transcripts, P4RNAs,

derived from thousands of loci in Arabidopsis, mainly at

intergenic regions, and 65% of them overlapped with

annotated transposons or repeats, but only 9% of them

overlapped with genes [45��]. These Pol IV/RDR2-de-

pendent transcripts are non-polyadenylated and, intrigu-

ingly, correspond to both DNA strands. A surprising

finding was that the 50 ends of P4RNAs bear a monopho-

sphate instead of a 50 triphosphate, or a cap structure

[45��].

Pol V transcripts may also have additional functions

outside of the RdDM pathway, as indicated by a ge-

nome-wide study to identify Pol V-associated loci [46,47].

About 75% of genomic sites occupied by Pol V correspond

to transposons and repeats that are also associated with

24-nt siRNAs and DNA methylation, indicating that Pol

V mediates RdDM at these sites. By contrast, the remain-

ing 25% of the sites occupied by Pol V lack these features

and are biased towards genes, suggesting that Pol V also

participates in different silencing pathways [46]. Pol II

also produces scaffold transcripts that recruit AGO4-

bound siRNAs to elicit RdDM and transcriptional gene

silencing at some loci [40], suggesting an intricate collab-

oration between Pol II and Pol V. However, the char-

acteristics that attract Pol II to some intergenic loci and

the requirements for Pol II interaction with Pol IV and Pol

V remain unknown.

Our previous genome-wide studies of exosome targets

revealed a large number of polyadenylated exosome sub-

strates corresponding to ncRNAs that originate from cen-

tromeric regions, repetitive elements and other loci that

produce siRNAs and are silenced through RdDM [1].

However, we found that the loss of the Arabidopsis core

exosome subunits had a minor effect on global smRNA

populations [1,48], by contrast to the fission yeast exosome,

which controls the spurious entry of RNAs into smRNA

pathways [49]. Instead, it resulted in decreased histone

H3K9me2 at several examined RdDM-controlled loci.
www.sciencedirect.com
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Figure 2
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LncRNAs in RdDM. Pol IV transcripts serve as precursors for 24 nt siRNAs and Pol V transcripts act as targets of siRNAs. The H3K9me reader

SHH1 recruits Pol IV to its genomic loci and the chromatin remodeler CLSY1 facilitates the passage of Pol IV [74]. Pol IV transcripts are made

double-stranded by RDR2, processed by DCL3 into 24-nt siRNAs, stabilized by methylation at the 30 end, and reimported into the nucleus in the

AGO-siRNA complex to guide the targeting of nascent Pol V scaffold transcripts. The DDR complex facilitates Pol V transcription [47]. DNA

methylation readers SUVH2 or SUVH9 aid Pol V recruitment to its genomic loci [75] and the IDN2–IDP complex bound to Pol V scaffold RNAs

interacts with SWI/SNF complex, which adjusts nucleosome positioning [76]. AGO4 interacts with Pol V and with a putative transcriptional

elongation factor KTF1 recruiting AGO4-siRNA to nascent Pol V transcripts. The siRNA base pairs with the nascent Pol V transcript and together

with RDM1 (RNA-DIRECTED DNA METHYLATION 1) recruits DRM2 (DOMAINS REARRANGED METHYLTRANSFERASE 2) to catalyze de novo

methylation at the homologous genomic sites. H3K9 methylation, deposited by KYP, SUVH5, and SUVH6, amplifies DNA methylation-mediated

silencing (reviewed in [11]). Adapted from [11]. In silencing of the solo LTR region, the exosome does not act in siRNA metabolism and DNA

methylation. The exosome associates with transcripts emanating from the adjacent scaffold-producing region, and participates in silencing by

affecting H3K9 histone methylation to maintain or establish chromatin structure, in parallel to RdDM, which affects siRNAs and DNA methylation.
The exosome also exhibits a strong genetic interaction with

RNA Pol V, but not Pol IV at these loci, and physically

associates with polyadenylated Pol II transcripts arising

from the regions generating Pol V scaffold RNAs

(Figure 2) [48]. Together, these data suggest that the

Arabidopsis exosome participates in the metabolism or

processing of lncRNAs produced from scaffold-generat-

ing regions and may contribute to coordination  of the

transcriptional interplay between Pol II, Pol V, and Pol IV

RNA polymerases, to achieve the appropriate level of

transcriptional repression. How the Arabidopsis exosome

or the exosome-controlled lncRNAs facilitate recruit-

ment of chromatin modifiers to enforce silencing through

repressive histone modifications remains an open and

interesting question.

Arabidopsis exosome complex subunits are functionally

diverse [1]. In addition, one of the nuclear catalytic

subunits of the exosome complex, RRP6L1, which has

exosome core complex-dependent and also complex-

independent functions, affects the metabolism of siR-

NAs and DNA methylation [50] as well, suggesting that
www.sciencedirect.com 
exosome subunits functions are essential in regulating

various ncRNAs in RdDM, including siRNAs.

LncRNAs in the regulation of flowering
Epigenetic regulation by lncRNAs plays a key role in the

regulation of flowering by controlling the expression of

Arabidopsis FLC (FLOWERING LOCUS C). The tran-

scription factor FLC represses flowering in a dosage-

dependent manner, blocking the expression of genes

required for flowering. FLC participates in the vernaliza-

tion pathway, which regulates flowering time in response

to prolonged cold, and in the autonomous pathway, which

regulates flowering independently of environmental sig-

nals [51]. Epigenetic silencing of FLC plays central roles

in both of these pathways and mainly involves histone

modifications. PRC2, which methylates histone H3K27,

is required for FLC repression and is recruited to the FLC
locus before silencing. Epigenetic changes in chromatin

structure, particularly the alteration of histone modifica-

tions from H3K4me3, H3K36me3, and H2Bub1 to

H3K27me3, alter the epigenetic state at FLC to repress

FLC expression (reviewed in [10]).
Current Opinion in Plant Biology 2015, 27:207–216
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Figure 3
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Regulatory lncRNAs produced from the FLC locus. Diagram of the FLC locus [57]. The arrow indicates the FLC transcription start site and vertical

bars denote the exons of the FLC sense transcript. COLDAIR lncRNA (purple) is transcribed in vernalization from the first intron of FLC in the

sense direction, relative to FLC mRNA. COOLAIR (blue) and ASL (red) are transcribed in the antisense direction; the arrow indicates their

transcription start site. COOLAIR AS I and II are alternatively polyadenylated, with a proximal poly(A) site in intron 6 and a distal poly(A) site in the

sense promoter region. Blue boxes show AS I and II exons, and blue dotted lines correspond to the spliced regions. ASL is also alternatively

spliced: red boxes depict ASL exons and red dotted lines indicate spliced regions. ASL spans the first intron of FLC. Brown dotted lines depict

the R loops, which form over the promoter region of COOLAIR. An R-loop that extends from the COOLAIR promoter to the proximal

polyadenylation site represses COOLAIR transcription.
Two different classes of lncRNAs transcribed from FLC,

COLDAIR and COOLAIR, participate in epigenetic

silencing of FLC (Figure 3) [28,52]. COLDAIR is a 50

capped, non-polyadenylated lncRNA transiently induced

by vernalization from intron 1 of FLC and transcribed in

the same direction as FLC (Figure 3). COLDAIR physi-

cally associates with CLF (CURLY LEAF), the plant

homolog of the PRC2 enzymatic component EZH2.

Knockdown of COLDAIR compromised the cold-medi-

ated enrichment of CLF and H3K27me3 at FLC and

impaired FLC repression in response to vernalization,

suggesting that vernalization requires COLDAIR [28].

COLDAIR was proposed to be required for PRC2 re-

cruitment to FLC chromatin to initiate epigenetic silenc-

ing, similarly to the models proposed for the mammalian

HOTAIR and Xist lncRNAs [39]. However, the fact that

mammalian PRC2 binds to unrelated RNAs with high

affinity suggests that lncRNAs alone are not sufficient to

target PRC2 to initiate silencing [53�].

COOLAIR, a set of several alternatively spliced and

polyadenylated lncRNAs (AS I and AS II, proximally

and distally polyadenylated, respectively) arises from

the 30 end of FLC in an antisense direction relative to

FLC [54]. Cold induces COOLAIR first, before

COLDAIR and before the major accumulation of

H3K27me3, and COOLAIR was originally proposed to

act during the early phase of vernalization [54]. However,

disruption of COOLAIR transcription does not disrupt
Current Opinion in Plant Biology 2015, 27:207–216 
vernalization [55]. Recent work showed that COOLAIR

participates in acceleration of transcriptional shutdown of

FLC during vernalization independently of PRC2 and

H3K27me3 [10,56]. The removal of COOLAIR desyn-

chronized the replacement of H3K36 methylation with

H3K27me3 in the intragenic FLC nucleation region,

suggesting that COOLAIR or the process of antisense

transcription could be required to coordinate the switch-

ing of chromatin states [56].

COOLAIR participates in the vernalization and autono-

mous pathways to repress FLC. In the autonomous path-

way the chromatin state of FLC is coupled to processing of

COOLAIR [57]. The constituents of the autonomous

pathway, FCA, FY, FPA, the cleavage polyadenylation

machinery components CstF64 and CstF77, and the

spliceosome factor PRP8, promote the choice of proximal

polyadenylation site in processing of COOLAIR, favoring

the production of AS I [57–59]. This affects the recruit-

ment of the histone demethylase FLD (FLOWERING

LOCUS D) to FLC resulting in H3K4me2 demethylation

of FLC [60].

Recent work also discovered ASL (Antisense Long) tran-

script in early-flowering Arabidopsis ecotypes that do not

require vernalization for flowering [29]. Distinct from

other lncRNAs at FLC, ASL is a non-polyadenylated,

antisense lncRNA >2000 nucleotides long, with two

alternatively spliced isoforms. ASL is transcribed from
www.sciencedirect.com
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the same promoter as COOLAIR and their 50 regions

partially overlap. However, ASL spans intron 1, an im-

portant region for maintenance of FLC silencing, and it

also overlaps with the region that gives rise to COLDAIR

in the sense direction. The ASL transcript physically

associates with the FLC locus and H3K27me3 [29], sug-

gesting that ASL and COOLAIR play different roles in

FLC silencing and perhaps in the maintenance of

H3K27me3.

The exosome functions in RNA processing and two exo-

some components have important functions in lncRNA-

mediated regulation of flowering. RRP6, the nuclear-spe-

cific catalytic subunit of the exosome complex, has exosome

complex-dependent and complex-independent functions

[61,62]. Arabidopsis RRP6L1 and RRP6L2 (RRP6-Like)

regulate expression or processing of both COOLAIR and

ASL; this regulation is independent of the exosome core

complex [29]. Although single RRP6L mutants had minor

effects on COOLAIR, RRP6L double mutants caused FLC
de-repression and delayed flowering. The pattern of down-

regulation of AS I and II in RRP6Ls double mutant was

somewhat similar to the pattern observed in mutants of 30-
end processing factors CstF64 and CstF77 [29,57], suggest-

ing that RRP6Ls may participate in the 3’-end processing of

COOLAIR.

Surprisingly, RRP6Ls appear to function as the main

regulators of ASL synthesis or biogenesis, as their

mutants show little or no ASL transcript. This observation

is intriguing since RRP6 is a 30–50 exoribonuclease and

RRP6 defects usually result in over-accumulation of

various RNAs due to failures of RNA degradation or

processing. However, recent work reported that a surpris-

ingly high number of yeast mRNAs also showed de-

creased abundance in rrp6D mutants [63��]. Similarly,

in humans, inactivation of the RRP6 homolog dramati-

cally reduces the levels of Xist, which functions in

X-chromosome inactivation [64].

RRP6Ls also affect epigenetic modification of FLC; for

example, RRP6L mutants exhibit decreased levels of

H3K27me3 and lowered nucleosome density at the

FLC locus, correlated with FLC de-repression and flower-

ing delay in these mutants. RRP6L1 physically associated

with the ASL transcript and directly interacted with the

FLC locus, suggesting that RRP6L proteins may partici-

pate in the maintenance of H3K27me3 via regulation of

ASL. Thus, RRP6Ls participate in the regulation of

synthesis or biogenesis of FLC lncRNAs and might also

act in different FLC silencing pathways by regulating

diverse antisense transcripts [29].

COOLAIR transcription is affected by R-loops, which

form over the COOLAIR promoter region, and a mutant

of TF AtNDX showed de-stabilized R-loops and increased

COOLAIR transcription [65]. However, the increase in
www.sciencedirect.com 
COOLAIR transcription in this mutant was also accompa-

nied by increased FLC expression and delayed flowering;

thus, the role of R-loop formation over the COOLAIR

promoter in the regulation of FLC remains unclear. The

formation of R-looped structures can arise from failure of

transcriptional termination [66], which itself serves as a

mechanism for co-transcriptional exosome recruitment

through the noncanonical 30 end-processing pathway

[63��]. RRP6 also participates in resolving deleterious R-

loops in mammalian cells [36��], suggesting that plant

RRP6Ls may act similarly in the processing of FLC anti-

sense transcripts and participate in resolving R-loops.

These observations suggest that the lncRNA-mediated

regulation of FLC is even more complex than previously

thought.

Many mammalian lncRNAs play crucial roles in bringing

together proteins, RNA, and DNA to actively shape

three-dimensional nuclear organization (Figure 1f)

[67��,68,69]. Although information about the role of

lncRNAs in nuclear architecture in plants is only begin-

ning to emerge, several studies hint that this mechanism

might also act in plants. First, the RdDM pathway may

contribute to higher-order chromatin structure through

collaborating with the MORC proteins. Arabidopsis

MORC6 has been proposed to provide ATPase activity

for DMS3, a component of DDR complex, to form a

functional analogue of a cohesin-like protein required for

X-chromosome inactivation in mice. In accord, mutant

plants deficient in MORC1 and MORC6 show decon-

densation of pericentromeric heterochromatin [70]. Sec-

ond, the FLC promoter and 30 terminator regions form a

short-distance interactions known as gene loops [71,72].

Similar chromatin loops formed between the locus that

gives rise to the APOLO lincRNA and the distant geno-

mic regions of the PID gene, and APOLO lincRNA

affects the spatial association of these loci. The dynamics

of the APOLO region loop formation is controlled via

RdDM, active DNA demethylation, and Polycomb com-

plexes [9�]. FLC alleles also physically cluster during

epigenetic silencing in vernalization, forming long-dis-

tance interactions, and this process is dependent on the

PRC2 trans-acting factors VRN5 and VERNALIZA-

TION 2 [73]. However, the role of lncRNAs in this

process remains unclear.

The example of FLC illustrates the diverse, complex, and

essential roles that lncRNAs play in plants. Moreover,

although many studies have improved our understanding

of the functions of lncRNAs, emerging work has only

begun to reveal the mechanisms that regulate lncRNAs,

illustrating the key importance of transcription and RNA-

processing activities in this regulation.

Conclusions and outlook
In the short time since the discovery of pervasive transcrip-

tion, studies in plants, animals, and fungi have significantly
Current Opinion in Plant Biology 2015, 27:207–216
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expanded our knowledge of lncRNA biology, particularly

in identification of different categories of lncRNAs. By

contrast, much remains to be understood about lncRNA

functions and mechanisms of action, particularly in plants.

Remarkable progress has been made in elucidating the

roles of plant lncRNAs in regulation of flowering time and

in RdDM. However, the roles of very few other plant

lncRNAs have been explored to date. Details on the

regulation of synthesis and biogenesis of lncRNAs in plants

also remain scant. Ongoing and future work to balance our

understanding by identifying factors controlling the ex-

pression and biogenesis of lncRNAs and integrating this

knowledge with the information learned about the com-

ponents functioning with these lncRNAs will provide

crucial insights into the mechanisms of lncRNA function.

Moreover, addressing all angles of the problem will also

enable synergistic advances that will allow plant lncRNAs

to be better understood. Many discoveries are waiting to be

unearthed for myriad plant lncRNAs.
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